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*46 ABSTRACT

The following set of notes is extracted from lectures given by the

author on the subject of NonStandard Games at U.C.L.A.'s Logic Colloquium

in February 1980, Stanford University's Department of Operations Research

in June of 1980, and the Second Victoria International Symposium on Non-

Standard Analysis held at the University of Victoria in British Columbia

in June 1980. The discussion is for the most part informal but nonethe-

less covers several aspects of cooperative games of the N-person variety,

and provides an introduction to NonStandard Analysis in some detail..

Reference is also made to the principal results of the author's Thesis,

A NonStandard Theory of Games, written at Harvard in 1979 under the direc-

tion of Professors Kenneth J. Arrow and Hilary Putnam.
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1. REMARKS ON THE THEORY OF GAMES

The Theory of Games is a discipline that seeks to mathematize into a

theory, alternative forms of rational behavior on the part of persons whose

interests are nonidentical.

The domains of application for the Theory of Games consist primarily

in the subject areas of Mathematical Economics, Political Science, and

Military Strategic Assessment.

.. ,.4By a game one typically refers to a situation in the above areas, with

specific rules for the players. A play of a game refers to a particular

occurrence of a game.

The oldest known theorem in the Theory of Games considered as a mathe-

matical discipline is attributed to Zermelo and was given at the Fifth

International Congress of Mathematicians in 1912: "On An Application of

Set Theory to the Theory of Chess."

PoTheorem: For the Game of Chess, either white can force a win, or

Black can force a win, or both sides can at least draw.

pf: Von Neumann/Morgenstern, Ch. 111.14, pp.98-128 by induction

on the length of admissible moves.

4 The game of Chess is a two person Zero-Sum Game. Before we character-

ize such a game however, we shall consider the concept of a strategy. By

a strategy one means a complete specification of a plan for a given play of

the game with respect to a given player of the game, which takes into

account the contingencies of the moves of the opponent.



-2-

For example, in the game of Tic-Tac-Toe, the first player has at most

5 moves per any given play of the game, and at each move there are at most

9 alternatives. But the first player has at least 10 times more than

45 - 5x9 strategies, for a strategy is a complete specification of play.

One sees that the number of possible strategies for just the first two

moves of the first player is already at 504, i.e., (9x(8.7)) = 504

Move 1 Move 2

21 A28

9 Alternatives

7 Alternatives 7 Alternatives

at Move 1 there are 9 alternatives, at Move 2 for each of the 8 possible

responses there are at least 7 alternatives, etc. The number of possible

strategies for Chess becomes astronomical.

One can obtain a useful abstraction of the type of game we have been

considering as follows:

roN , {h I , {s } )

and

(i) h:( It Sj) -> {-1,O,l}
JJEIN

(ii) E h =0

where IN is the set of players

{S is the collection of strategies for each player
J JON

{h is the collection of payoff evaluations for the players.
JJIN
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To state the principal result concerning the solution of such games,

one requires the notion of an equilibrium point of r.

Definition: An equilibrium point of r is an s e( n Sj) such thatJEIN

for each JfIN and any strategy tjCSj, hj ('It ) _ h.(s), where sItj is

identical to s with sj replaced by tj.

The principal result for such games was given by J. Nash, Annals of

Mathematics, 1951, for the general case of IIINII . 2 and finite:

11Theorem (Nash): Any game of the form r(IN, {h } {s j} jc) whereJ ic ' cI

INis finite and each S. a compact convex subset of metric space X,J

and each h : S. IR c.ontinuous, has an equilibrium point.

For the case of IN 11,2}, r has an equilibrium point if, and only

if

3 ( 1 S.) and 3h : ( T" S.) > IR
Je]N JjE1I

such that

max min h = h(s) = min max h 2

s1 s2 s2 s1

The so-called Min-Max Theorem of Von Neumann.

Game Theory can be classified effectively into the following sub-

divisions of the diagrammes:

*" a" . .'" "' ' "":" "-" ":" " "-'.'; * ''-'.* " . .7
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Non-Cooperative Games Solutions

Two Person N-Persop

K-valued Nash Equilibrium

Points

Non K-valued

Cooperative Games Solutions

The Bargaining Set
4 N-person

The Centroid

The Kernel
K-valued The Core

The Shapley Value

Non K-valued Sub-Solutions

Von Neumann Stable Sets

The topic of NonStandard Games that will be of concern to us is within

the domain of cooperative N-person games. The construction of a *Finite

cooperative game, which we define subsequently, is designed to permit the

continuous representation of principal solution concepts by means of deriving

nonatomic measures from the NonStandard domain. We will treat, in brief

fashion, in the next section those aspects of N-person cooperative games that

will be needed in our subsequent discussion.

-0 N
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II. N-PERSON COOPERATIVE GAMES

A finite cooperative game in the classic Von Neumann/Morgenstern

sense is a pair, r(IN,v), for IN a finite set {1, .... n} and

v P(IN) -> such that

(1) v({i}) = 0

(2) v(0) 0

(3) v(]N) <

One frequently assumes an additional property of superadditivity:

v(SUT) K v(S) + v(T) if (TnS) o 0

for S, TcP(IN)

We will ignore coalition structures and assume players are aligned

in the grand coalition IN. An individually rational payoff configuration

is a pair, (X,]N) for IN the coalition structure and X IN -> IR+ such

that:

(1) x(i) Z. v({i})

(2) E X(i) = v(N)
ic IN

Although there are six major solution concepts for games of the form

r(mN,v), namely, the Core, the Nucleolus, the Von Neumann/Morgenstern

Solution, the Shapley value, the Kernel, and the Bargaining Set, we will

be primarily concerned with only two in what follows, the Bargaining Set

and the Kernel, the latter having more emphasis.

- - C * * ~ ~ ~ -.. -- "2
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Al low T IK {Sep(]N) LCS -A. KJS}. For an i.r.p.c. (X,]N) an

objection of i against j is a pair (y,S) for ye(IR+)'S' SeTi such that:

y(K) X(K) for KcS

yMi > x(i)

Z y(K) S_ v(S)
Kc S

A counter-objection to (y,S) is a pair (Z,D) for Zc(]R+)IDI, DET..
+J

such that:

Z(t) >. x(t) for tcD - S

Z(t) 4 y(t) for tc sflD

A Justified objection is one for which there is no counter-objection.

The Bargaining Set M (r) is the set of i.r.p.c.'s in (X,IN) such that

no Justified object can be made.

Define next, for SeP(IN) the excess of the coalition S with respect to

the i.r.p.c. (xIN as e(S,X) ) - EX Then for i,jc]N let

Sjj(X) - sup (e(S,X()).

A player i is said to outweigh a player j with respect to (X,JN) if:

S ij(X) >S ji (x) and X(j) > 0.

Outweighing is an indication of leverage. Note that if x(i) =0, j

can 1 play alone" since v({j}) =0; counter-objections can be trivially

obtained in such a case.
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We say that an i.r.p.c., (X,]N), is balanced if there is no pair of

players i,JcfI such that i outweighs J. This condition is satisfied when:j

[S ij(X) -Sji(X)] x(i) z- 0

The Kernel, K(r) is the set of all balanced i.r.p.c. 's.

An example of a Bargaining Set solution:

Allow IN = {1,2,3) and define

v : 2 - l O

as: vO1N) =v({l,21) =V({1,3}) =1

v({2,31) = and v({j}) 0 j=192,3.

An i.r.p.c. for the above game is then such that

X i v({j}) 0 j =1,2,3

Now, if 1 objects to 3, then he can offer to 2 the following:

2
(v({1,21) E Zx) 1- (X +X)

To counter I's objection, 3 can offer to 2 the following:

3
(v({2,3}) - X x+ 3

iThen for Xe Ml1 we must have

1 , X2 X2 X3

V .....



Since 1 cannot have a justified objection against 3, 3 must be able

to offer at least as much to 2 as I can. Hence, the inequality.

One argues in an analogous fashion that if 1 objects to 2, he can

offer to 3 the following:

3
(v({1,3)) - EXj) = 1 - (xI+x3)

To counter l's objection, 2 can offer to 3 the following:

(v({2,31) - F = _ (x 2+x 3 )
j =2J23

i
If then Xc Ml, we must have as before that

1 - X1 - X3 g - X2 - X3

as it would not be permitted that l's objection against 2 be justified.
I,. i

Continuing in a symmetric fashion, we see that for Xc M in the game

given above, then the following set of equations holds:

i - I - X2 = X- X2 - X3

1- X - X3 X- X2 - X3

XI + X2 + X3

which gives the solution of the following diagramme

p. '-...............................................................................-"..'-".-....%
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(0,0,1)

6 = (2/3, 1/6, 1/6)

(O,1,0), (1,0,o)

(100

One notes that payoff allocations in this instance somehow indicate that '

INe
v(S) for l€S is such that v(S) > v(T) for lJT, S, Te2 . This simple

observation has been developed and extended to market games of competitive .

economics by J. Geanokoplos in "The Bargaining Set and NonStandard Analysis,"

Harvard Discussion Paper, 1978. Geanokoplos shows that a "version" of the N

Bargaining Set solution coincides with the Core in the NonStandard Exchange

framework of Loeb and Brown by means of coalitional contributions of non-

negligible sets of players. We will not discuss Geanokoplos' Bargaining

Set,as the analytical framework employed there to define his Bargaining Set

differs from our own, in that it is specific to market games.

The following set of theorems are well-known results in the literature

and serve to indicate the interrelationships between the major solution

concepts:
.-%.

P Th. 1: (VIN) M (r) + o (Peleg)
11 r

STh. II: (VI) K(r) + 0 (Maschler & Peleg)

Donald Brown and Peter Loeb, "The Values of NonStandard Exchange
Sconomies," Israel Journal of Mathematics, Vol.25, 1976.



10-Th I II: (VN K-10-

I~~h.III+ (YNlG)~M(r) (Davis & Maschler)

mom. IV: (YIN) C.(r) s m' (r)

for C(r) ={xe(x,iN) Se s N)e(SX)g 01 , the Core.

OoTh.V: (YIN) if am() 0 then

K(ro1aCr + 0 (Davis & Masehier)

10-Th.VI: N(r) + 0 (Schmeidler)

lorh.VII: N~r) s-~)s r (Schmeidler, Davis & Maschler)

PoTh.VIII: if c(r) + 0, then Nm')cmr (Schmeidler)



III. *FINITE COOPERATIVE GAMES

4

1. Why a NonStandard Theory of Games?

(1) By the features weakly saturated enlargements that we employ, the

theory is preserving of all standard results of finite cooperative

games. Such enlargements are conservative.

* (2) It is a less coarse semantic framework for many intuitive mathemati-

cal concepts that are difficult to be consistently formulated in

standard mathematics.

* (3) The elegance and power of NonStandard techniques can be obtained within

weakened frameworks of the assumptions of set theory. In particular,

V weakly saturated enlargements can be obtained without the Axiom of

Choice. We have shown elsewhere that this feature has implications

45
for the issues of measurability that arise in nonatomic, noncooperative

exchange. The latter can be linked directly to the nonatomic repre-

sentation theorem.

4 (4) Weakened solution concepts can be obtained by external imbeddings of

NonStandard Games. The space of solutions is thereby enlarged non-

4- trivially by the *Finite context.

2. Preliminary Concepts on Filters

Df.2.1.: Allow B to be an algebra of sets derived from a subfield of

an arbitrary set Y. Assume that I S B and 0 + 3. Then

(a) 3has the finite intersection property if [nlbK] 0 for

n < W and each b F3.
o K

4Zf 4
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*. (b) 1 is a filter of B if for a,bE.

(i) (anb)E3 for a,bcE3

(ii) (afb) => bE3 for aE#3, bEB

A filter . is said to be proper if 3 B, or alternatively 0 3. The

improper filter of B is merely B.

(c) Let F denote the family of filters on B. Then the filter generated

by 3 is the smallest filter containing 3 in F, which we denote as

<3>. Alternatively, <3> = n3. such that ItncF.

Additionally,

(c)(i) <3, = {bcB:(3n<w)(3{b}Kn'l.3) :bK b}
K'
K

(c)(ii) <3> is proper if an only if 3 has the finite intersection property.

Define the relation % on pairs in F as:

1 > 3 2 if bcL 2  b 3 V

In which case we say that 31 is finer than 3 2. One then sees that <3>

is the least fine of the ordered set <F(3), >, for F(3) the subfamily of F

whose members include 3.

Df.2.2: Allow B to be an algebra of sets and consider the ordered

class <F, Z> where F is the collection of proper filters of B.

An ultrafilter of B, UI, is a most fine element of < ', ,>, that is, UI

is a proper filter and is not properly contained in any other proper filter.

An important fact is:

lo-rheorem: Allow B to be an algebra of sets and allow 3 C B. If 3 has

the finite intersection property, then there is an ultrafilter UI of B

such that UI 3.
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In particular the theorem states that any proper filter can be

extended to an ultrafilter with respect to an algebra B.

A further discussion and proof of the theorem can be found in the

book by Comfort and Negrepontis, The Theory of Ultrafilters, Springer-

Verlag, 1974.

The theorem, also known as the Ultrafilter Theorem is due to Tarski.

As the proof is simple and straightforward, we give the details.

22 Lemma: Per premiss of the theorem, there is a filter, D, on B

containing 3.

Pf: Recall from (c)(ii) that per premiss of the theorem 3 is proper

Kand thus 03. Then for some filter D, if {X}j=l_' then

K K
( AX)cD and thus if 3 were in D, n + 0. We show the
J=1 j=l

converse to establish the Lemma.

If 3 is proper, allow

{yB : {Xj} K  E K : X) Y}
* j=1 j=l -

Obviously 3S (+). We claim that tl(+) is a filter. Clearly, by defini-

tion for X,yE3(+) for which Xry,yE3(+). Suppose y,y'c3(+). Then for K,XcIN

3{ K 3 and {xl}g !3 for which n K x.) y and A x!) s from

whence, ((i') sl( yfly'. Thus 41Y'cLI(+).
\J=l ~ i=l I

Finally, since 3 is proper and 00,3-+) means j(+).*

Q.E.D.

(One can show that 3(+) <3> defined as before.)

>.%
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Lemma: (Tarski 1930) <3- is contained in an ultrafilter.

Pf: Consider the ordered structure <F(3), >> which can be viewed as
POSET under . Suppose C were a chain in <FG(), . We show

that <F((), I> is inductive, i.e., everyC has a bound in

<F(3), >. Let C =fn -. Then if X,ycC, therefore some eK' cC,

XE and yecO . C, is a chain, however; thus either CK > \ or
K z

at >\ CK ' Assume C.K \ CX" Then xYECK. IK is a filter however:
therefore (xfy)cc.! C. If ZeJ and ySZ ipso facto ZeC C. Since

K K

0jC- for any j, CcC, OJC. Then C is a filter and C 3.

By Zorn's Lemma there exists UI such that UI is order maximal for
<F(t3), >>.

Q.E.D.

3. NonStandard Analysis

Allow IR to denote the real number system. Let D be an algebra of

sets and let LM be an ultrafilter on D.

DIf A and B are two mappings of D into IR, i.e., A,BeIR D , then one

says that A B if and only if {n : neD and A(n) = B(n)JcUI. The relation
Ul is an equivalence relation.

Denote by IR the set I of all equivalence classes. The equiva-

.lence class of a mapping A:D -> IR, is denoted as a, so that Aca. One

can then define algebraic operations in IR as follows:

a + b c if and only if 3Aea 3Beb 3Ccc such that fn:nED and

A(n) + B(n) = C(n)}cUI.

Similar definitions obtain for the operations ab = c, a - b = c, and

a b.
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In this manner, with these definitions, IR is a totally ordered field,

D*
and by way of the constant mappings in IRD, IR IR.

If R + IR, then *R is said to enlarge IR and ZR is therefore non-

archimedian. This will occur if the ultrafilter UI on D is N1-adequate.

The details of the construction and an in depth exposition of NonStandard

Analysis can be found in the recent treatise by Luxemburg and Stroyan,

Introduction to the Theory of Infinitessimals, Academic Press, 1976.

If the filter on D is at least N -adequate and thus IR enlarges IR,

from the non-archimedian character of ZR (owing to the categorical nature

of IR as a continuously ordered dense archimedian field), infinite integers
**

must exist in IN, i.e., 3wE ]N - IN such that Vnc]N(w>n). The reciprocals

of such integers, which exist by way of IR being a field, are therefore such

that Vnc]N(l/w < l/n) and are termed the infinitesimals.

There are three forms of NonStandard Numbers:

(A) The infinitesimals, M1

M1 Xe c :*Xj < v for any veIR+ - {o}}

(B) The S-finite NonStandard Numbers, M
0

M=* * *
M X * : i < v for some vcIR+ {o}}

(C) The infinite NonStandard Numbers, I-M
0

IR-M = { x* : l > v for all vcIR+ - {o}}

Further terms and nomenclature are contained in Lewis, A NonStandard

Theory of Games, Ch. I.

'a****j ' ,. .'v.;<K.2..K-.W *?*. * . .. 'a
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If the ultrafilter UI on D is Nl-adequate, then we say that the

enlargement of IR, IR is weakly saturated.

Alternatively characterized, IR is weakly saturated if for a rela-

tion 0 : IR x IR -> {0,1}, for {a} n  4= Dom(O) for some arbitrary ncIN.
i jel

If 3b(n)eRng(O) such that 0 is concurrent, i.e.,

if j(ajOb(n))- 1

then 3*be IR such that

A aj 0 b) = 1
(JEN*

IR is weakly saturated if every concurrent relation 0 in Mis bounded

in IR.

From this characterization of weak saturation, the following simple

result can be expressed:

• * ,

Theorem: If IR is weakly saturated and if wc IN -IN, then w is Non-

Standard.

Pf: IR is weakly saturated and the following relation is concurrent:

R ={(X~y) : -1$(X,y)}

where, VX,yclN D(X,Y) X<y

Any linear ordering on ]R is concurrent, in fact,

By the properties of the enlargement therefore,

Vx IN 3 E -(x,Cl. ,-'

If a cIN, then

VXEIN 3ncIN [x<n]
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which cannot be of IR because it is archimedian. Then C must

be in IN which gives the result.

Q.E.D.

A further result that can be established within the framework of an

Nl-saturated enlargement is that the variety of set [o,w] viewed as an

initial segment of IN with we IN with we IN - 14 has an exceedingly large

cardinality. In fact 1II1o,W1I1 > 21 lo which has lent support to our intui-

tions that the NonStandard framework is appropriate for effectively modelling

continuous games. The result is given in Lewis, A NonStandard Theory of

Games, Ch.I,and is due primarily to results found in E. Zakon's fundamental

paper: "Remarks on the NonStandard Real Axis" in Application of Model Theory

to Algebra, Analysis, and Probability, W.A.J. Luxemburg, editor, Holt

Rhinehart & Winston, 1969.

The approach we employ is to model an extension of the classical coopera-

tive games of Von Neumann/Morgenstern on a *Finite Set [o,w]S IN, and then

to demonstrate that such a model has a straightforward nonatomic representa-

tion in the standard domain. The following results are contained in Lewis,

A NonStandard Theory of Games, Chs. I and II.

4. Principal Results on *Finite Games

OExistence Theorem: For a *Finite game r - <F , A(IF), v> when, *

IF- [o,w] S IN for we IN-IN,A(IF) the algebra of internal subsets

of IF taken as coalitions, v : A(IF) -> IR+ internally with

Q-bound, i.e., 11*v(IF)Il < K for some KE IN such that S-superaddi-

tivity obtains as:

g-4-
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v(IUT) >  v(S) + *v(T) if S,T&A(IF) and S - 0. The set of payoff

configurations (x,IF) (which is external) when XE(X,IF) if and only

if the following are satisfied:

(a) X : IF -> IR+ is internal

+

for x(J)cM+ and JEIF
0

(c) x~i) 0j 0

then will contain some x for which Sij = ji(x)J a.e. in IF.
Mod M1

,Nonatomic Representation Theorem: Any *Finite cooperative game

*r - <IF, A ), v>, when viewed as a construction a nonstandard *Finite

measure 0 - <IF, A(IF), pIF> for pIF *Finite additive, has a nonatomic
*

(standard) representation T( r) on T = <X(IF), x(A(F)), m> for X(A(IF))

the a-algebra of internal subsets of A(IF) by way of the construction

of P. Loeb, "Conversion from NonStandard to Standard Measure Spaces,"

TRANS. A.M.S., Vol. 211, 1975. Alternatively phrased, for the measure

P iFns (S) ScA(IF), the payoffs (X,]F) are shown to beII IFI
UIF-measurable such that their standard parts: st(X), Xe(X,IF) are

1 1\
m-measurable in T. Provided that Z X(J) is S-bounded, i.e.,

II IF II F

1 Z 1,x(J) < ncIN, one can show that xEQK( r) if and only

X X

if st(X)cQK(?(r)).

. . ... . .. .. . ..
" -I , . ¢ "( ?, : " :".::', ". : "-5 " '.v .. . . .5 ....d. ........ . . ........... .. . .. ..




